AD-767 977

LIMITING DISTRIBUTIONS IN A LINEAR
FRACTIONAL FLOW MODEL

Richard C. Grinold, et al

California University

Prepared for:

Office of Naval Research

September 1973

DISTRIBUTED BY:

National Technical Information Service

U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151




ORC 73-16
SEPTEMBER 1973

LIMITING DISTRIBUTIONS IN A LINEAR
FRACTIONAL FLOW MODEL

R'Pmduu-d by

NATIONAL TECHNICAL
INFUQEMATION SERVICE

''''''''''''''' Commere
Springfield va 2215

. ;',"\
I\ oG\ ‘3“"\3‘%”‘ A

PERATIONS e
RESEARCH - £
CENTER | L

b ' AT R
Appaoy. § o g
d B MG releagy,
GRTA T R PN . L
T T P i

COLLEGE OF ENGINEERIN

UNIVERSITY OF CALIFORNIA - BERKELEY %

sl



LIMITING DISTRIBUTIONS IN A LINEAR FRACTIONAL FLOW MODEL
by
Richard C. Grinold
University of California, Berkeley
and
Robert E. Stanford

California State University
Hayward, California

SEPTEMBER 1973 ORC 73-16

This research has been supported by the Office of Naval Research under
Contract N0O0O014-69-A~0200-1055 with the University of California.
Reprocduction in whole or in part is permitted for any purpose of the
United States Government.



[}

Unclassified Y

Security Classification

DOCUMENT CONTROL DATA-R&D

(Security classilication of titlo, body of abxtrect und indexing annotation must be entered when the vverall report is clossilied)

| ORIGINATING ACTIVITY (Corporate euthot) 28, HEFORT SECURITY CLASSIFICATION
. . Unclassified
University of California, Berkeley =] CrGUE

3 REPORTY TITLE

LIMITING DISTRIBUTIONS IN A LINEAR FRACTIONAL FLOW MODEL

4 DESCRIPYIVE NOTES (Type of report and,inciusive dates)

Research Report

% AUTHORI(S) (First name, middie initial, last name)

Richard C. Grinold and Robert E. Stanford

6. REPORY DATE 78, TOTAL NO. OF PAGES 7b. NO. OF REFS
September 1973 22 37 7
8e. CONTRACY CR GRANT NO. 9. ORIGINATOR'S REPORT NUMBER(S)
N00014-69-A-0200-1055
b. PROJECT NO. ORC 73-16
NR 047 120
c. 9. OYHER REPORT NOIS) (Any other numbers thal may be esaigned

this report)

10. DISTRIBUTION STATEMENT

This document has been approved for public release and sale; its distribution is
unlimited.

1. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY
Department of the Navy
Office of Naval Research
Arlington, Virginia 22217

None

13. ABSTRACT

SEE ABSTRACT.

DD -?::.;1473 (AGERY] Unclassified

S/N 0101-807-6811 Security Classification

A=t 2ne




Unclassified

Security Classifwcation

~>arre

Foo “EY WORDS T LI SR EniNISC
ROLF wY ROLE wY ROLE | wr
Markov Chains
Linear Control
Equilibrium Results
Fixed Points
Manpower Flow
i FORM =
DD ' NOV 091473 (BACK? Unclassified

Vet

Security Classificstion




ABSTRACT

We examine a linear fractional flow model which can be
interpreted as a Markov chain with partially controlled
transition probabilities. The paper classifies the set L
of limiting distributions and details several of its proper-
ties. A precise classification in a three dimensional case
is presented.



1. INTRODUCTION

This paper identifies the set of limiting solutions for the n dimensional

constrained linear system

x(t + 1) x(t)P + u(t) ,
(1) .
x(t)e =1, u(t) >0 t=20,1,2, ...

where e 1is a column vector with each of its n elements equal to one. The
initial vector x(0) > 0 is given, and the n x n matrix P 1is nonnegative.
In general, we assume w = (I - P)e > 0 and that (I - P) has an inverse.

Our principal result, however, requires slightly stronger assumption. It fol-
lows that x(t) 1is always a nonnegative vector with components summing to one;
i.e., x(t) 1is the distribution of some quantity at time t . Equation (1)
shows how that distribution can change over discrete time.

Bartholomew, [1] and [2], has derived an equivalent expression of the
dynamics (1) in which x(t) 1is the distribution of a partially controllable
Markov process. The equivalence is based on the identity x(t)w = u(t)e ,
which holds if x(t) and wu(t) solve (l). For any solution of (1) we define
z(t) and Q[z(t)] by

‘x(t) if u(t) =0 l
(2) z(t) =

14

( u(t)/u(t)e otherwise’
and
Qij[z(t)] = Pij + wizj(t) ,

..I.
or in matrix notation

Qlz(t)] = P + wz(t)

rSince w 1is a column vector, wz(t) is an n x a matrix.



Note that z(t) > 0, z(t)e =1, and that Qij[z(t)] is a stochastic

matrix. It follows that
(3) x(t + 1) = x(£)Q[z(t)] .

Now, in contrast, suppose z(t) 1is any sequence with z(t) > 0, z(t)e =1 .
Given x(0) , we define Q[z(t)] and x(t) by (2) and (3). It is apparent that
u(t) = [x(t)w]z(t) and x(t) will solve (1).

This paper characterizes the set L of limiting distributions. We can say,
roughly, that for any x(t) and u(t) satisfying (1), x(t) converges geome-
trically to L . The set L has two other interesting properties. First, let
a closed set A be defined as a trapping set if x(0) ¢ A#» x(1) ¢ A . We
find that L 1s the smallest trapping set. Second, if x(0) & L , then it is
not possible to return to x(0) ; in contrast, if x(0) 1is in the relative in-
terior of L , it is possible to return to x(0) 1in a finite number of periods.

Section 2 motivates system (1) in the context of a manpower planning prob-
lem. Secction 3 is devoted to definitions, a statement of the theorem, and a
discussion of the result. In Section 4 we examine a special case with n =3 ,
and obtaln a precise characterization of the set L . Proofs are included in
Section 5.

This paper extends and strengthens several results of Toole [7]. Specific
references to Toole's work is included as it appears. For completeness we have

included short proofs of several of Toole's results.



2. MOTIVATION-MANPOWER FLOW

Consider an organization with n job classifications called ranks. Let
Mij be the fraction of workers in rank i that move to rank j 1in one period
and let vj(t) > 0 be the number of workers hired into rank j in period ¢t .

Finally let yj(t) be the number in rank j at time t . 1t follows that

it

'z’

(4) y.(t + 1)
J i=1

7y (DM + v (),

or in matrix notation y(t + 1) = y(t)M + v(t) .
The initial inventory of manpower is given by y(0) > 0 . Assume the
organization is growing constantly at rate (0 - 1) ; thus the size at time

t is Oty(O)e . Let x(t) be defined as x(t) = y(t)/ety(O)e , and define

t+1y(O)e . Then x(t) and u(t) obey Equation (1) of Section 1

u(t) = v(t)/6
with P = M/6 .

As a second manpower example consider an organization with n - 1 ranks.
Detine y , v , and Mij as above. We add rank n to the organization to
consist of unfilled positions, and let yn(t) denote the number of unfilled po-

sitions at time t . Define vn(t) as the number of positions open during ¢t

which remain open in the next period, set Mni =0 for 1i=1,2, ..., n and
n-1

Min =1 - '21 Mij for i=1,2, ..., n~-1. With these definiticns Equation (4)
J=

holds for our second manpower system.



3. DEFINITIONS AND MAIN RESULT

n
We define the norm of a vector x € R" to be ||x|| = z Ile . The
5=1

closure, relative interior, and convex hull of sets are denoted cl , ri , and C
respectively. We let ¢ denote the empty set. The simplex S = {x l Xxe =1 ,

n > 0} 1is the set of possible distributions and we topologize the closed subsets
of the metric space (S,|| ||) with the Hausdorf metric, [3]:

§(A,D) = Max Min le - y||
x¢A yeD

(5)
d(A,D) = Max {8(A,D),6(D,A)] .

Let E = {x | X € S, 2 xP} be defined as the set of equilibrium distribu-
tions; then the solution x(t) = x for all t 1is feasible for (1) if and only
if x € E. Now choose any z € S and consider the stochastic matrix

Q(z) =P+ wz where w= (I -P)e>0. When (I -P) has an inverse N ,

v

"

Toole [7] has demonstrated that x = zN/zNe is the unique x ¢ S such that

x = xQ(z) . It follows that x € E 1f and only if x 1is a stationary vector

of some stochastic matrix Q(z) for 2z € S .

Suppose x = xQ(z) , x ¢ S . It does not follow that for any x(0) , with

u(t) = (x(t)w)z , we have x(t) >~ x . Consider P and =z below.
01 0]
P=10 0 lJ z = (1,0,0)
¥ 00

(6)

010
Qlz} ={0 0 1 (= x = (1/3,1/3,1/3)
1 00

tiowever if x(0) = (a,B8,Y) , then x(1) = (v,a,B) , x(2) = (B,v,a) , x(3) = (a,B,Y) .
When =z 1is strictly positive, the Markov matrix Q(z) is regular and we then
have x(t) » x for any initial x(0) .

. A
Let A be any nonempty subser of & cnd R{A) = {x | x ¢ S,x > yP,y € A} .



When A 1is a singleton, {x} , we use the notation R(x) . For A ¢ ¢ , define
RO(A) = A, RY(A) = R(A) , and for ¢ > 1, RVE(A) = R(RY(A)) . For any x €S ,
Rt(x) is the set of x(t) feasible in (1) given that x(0) = x .

It is easy to verify that if A 1is closed, convex, or polyhedral then R(A)
will have the same property. Moreover, AC B = R(A) C R(B) , ard CR(A) = R(CA) ,
and cl R(A) = R(cl A) . We also can see that for any t , EC RE(E) < RE(s) cSs.
Therefore we define the limiting set L as L = Jio Rt(S) . Note that L is

nonenpty, closed and convex. Toole [7] has demonstrated

Proposition 1:

R(L) =L .

Proof:

yeR(L) > yeS and y > xP for some xeL_C_Rt(S) for all t >0 .

Thus y ¢ Rt+1

(S) for all t>0= yeL . Conversely if xeL , then x€¢ S,
and since x € Rt(S) for all t > 1 , there exists a y(t) ¢ Rt-l(s) such that
x > y(t)P . Let y be an accumulation point of the y(t) . It follows that

yeL, thus x > yP = x € R(L) .2

Proposition 2: (Stanford {6], Toole [7])

If (I - P) has an inverse then

(i) int E# ¢ .
(i1) For any x(0) , and y € int £, there exists a finite T such that

y € RE(x(0)) for t Lk

Proof:

We have (I - P)_l >0. If b>0, then y = b(I - P)'_l >0, and

x = y/ye catisfies x € S, x> xP .

x(I - P)

With x defined as above, we have =2 = @ strictly positive



appointment vector. Therefore x(O)Qt(z) + x € rl E. There exists an ¢
neighborhood Nc(x) of x such that for any vy ¢ Ne(x) we have x € R(y) ,
or y > xP . There is a finite T such that x(O)QT-l(z) € Ne(x) . Thus

X € RT(x(O)) , and since x ¢ E , we have x € Rt(x(O)) for all t>T .8

For k > 1, define the kth cycle set as Ck ={x| xe Rk(x)} . If

X g Ck , then it is possible to return to x in k steps; note that Cl =E .

k

.

Define CcD = G cC 3 if x ¢ C°° , there is some finite k such that it is

k=1
possible to return to x in k steps.

Proposition 3: (Toole [7])

cl ¢ = cl[ﬁ Rt(E)] cL
t=1
Our theorem strengthens this result considerably.
Theorem 1:
If w= (I - P)e > 0, then

(i) L 1is the unique closed nonempty subset of S satisfying R(L) =L .

(ii) For any closed nonempty subset A of S ,
t t
d(R"(A),L) < 0°d(A,L)

where 0 <o <1.
(1i1) c1C =1

(iv) 1f ¢ # AC S, then R(A) = A implies clA=1.

The proof will be presented in Section 5. It depends in large part on the

following lemma:

Lemma:

Let o = [1 - 1/2 Min {wi | £+ =1,2, ..., n}] <1.

For any x , ¥y , 2 €S,



Ix - ya@) || <ollx -yl .

We suspect that a weaker version of the theorem is valid under the weaker
hypothesis that (I - P) 1is nonsingular. However, the lemma does not generalize
with that hypothesis. Recall example (6). Let z = (1,0,0) , y = (0,1,0) and

x = (0,0,1) . We have

Q% (z) yQ" (2) Il (x - v (2)|]
t=0 (0,0,1) (0,1,0) 2
t=1 (1,0,0) (0,0,1) 2
t =2 (0,1,0) (1,0,0) 2
t=3 (0,0,1) (0,1,0) 2
This example has
lex - Q5@ = [Ix - y|]|  for a1l t .

Before concluding this section we shall discuss several implications of
the theorem. First Rt(A) + 1. for any nonempty subset A of S . For any
A we have Rt(S) 2 Rt(A) . In addition, there exists a finite T and x € riE
such that x € RT(A) thus RE(A) 2 Rt-T(x) for all t > T . The sequences
Rt(S) and Rt_T(x) are closed and converge geometrically to L . Moreover,
the sequence Rt(S) is contracting, and the sequence Rt-T(x) is expanding.

As a second point, let A be any closed subset such that R(A) C A . To
see that LCA, assume x e L and x $ A . It follows that x ¢ RE(A) for
all t , and therefore that

d[R"(A),L] > d[A,L] > Min ||x - y|| > 0.
yeA



However, the term on the left converges geometrically to zero.

We observe if x & L , then it is impossible to return to x . If we did

return to x in k steps then x ¢ Ck C L . To show that we can return to any

(V]
point in ri L in a finite number of steps we must demonstrate that C is

convex. If x and y are in c” then x ¢ Ck and y € Ch for finite k

and h . This implies that both x and y are in Ckh . Since Ckh is

closed and convex, the line segment joining x and y is in Ckh c ¢ . It

rifel Cw] =riC i ¢ . For any

follows Rockafellar [5], page 46 that ri L
xeriL and ye S, it is possible to move from y to x in a finite number
of steps. This follows since the sequence of closed sets Rt(y) + 1L, and
x € vl L ; thus there must exist a finite T such that x € R?(y) . In con-
trast, if «x t L and the initial y € L , then it is not possible to move from
y to x in a finite number of steps.

The next section presents a precise characterization of L 1in a special

case. Proofs of Theorem (1) and Lemma (1) are presented in Section 5.



4. SPECIAL CASE - A CHARACTERIZATION OF L

This section examines the special case of

P1; Ppo 0
| Pog Py
0 0 p33

where we assume

(1) w, >0 1=1,2,3.

(7N (11) py, > Ppy
(iii) w, > w

The example corresponds to a three rank manpower hierarchy; e.g. assistant, asso-~
ciate, and full professors. Assumption (i) means it is possible to leave from
any rank, (ii) is satisfied if Py 2 1/2 for all i and (iii) indicates that
withdrawal rates are higher in rank 2 than in rank 3. We shall present some
numerical calculations below indicating that the main result of this section

is true under more general conditions. The sets S and E are depicted in
Figure 1. In this special case it is possible to obtain a precise characteri-
zation of the set L .

For k=1,2,3 let Q(k) be the matrix with

s plk + vy if j=k

.

In the manpower context, Q(i) corresponds to making all new appointments in

rank i, For k=1, 2, 3 let xk be the stationary vectors of the Q(k) ;

Q5 () =

i if j 4k

. -1
the xk are proportional to the rows of (I - P) and are the extreme points

of E .
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Recall that C denotes convex hull, Define
F=ClxQt(1), x5 2),x%t3)  t=0,1,2, ...} .

The sequence xiQt(j) simply starts at = and follows appointments in rank
j only for all t . The points szt(3) for t > 1 all lie on the line

segment [xz,x3] , thus
F = C(xQ°(1),xQ%(2),x*  t=0,1,2, ...} .

Theorem 2:

Under the assumptions of this section,

This theorem and the analysis developed in its proof have two corollaries.

Corollary 1:

For any cycle of length k , at least one element of the cycle lies in E .

Corollary 2:

For any solution of (1) and any € > 0 neighborhood of E we have
x(t) € Ne(E) infinitely often.

The result allows us to make an excellent and easily :alculated approximation
of the set L and to gauge the effect of changing parameters on the set of
limiting possibilities. Several cases are depicted below.

In Tigure 2, we have w, > v, and Theorem 2 fails. However, in Figure 3,

3

Vs > vy and it is obvious that our approximation is valid. Thus it is sufficient
but not necessary to have Wy SV, -

Figures 3 and 4 show two alternate P matrices and the effect of a change

in the elements of P on both the equilibrium set E and the limiting set L .
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5. PROOFS

This section details the proofs of Lemma 1 and Theorems 1 and 2.

Proof of lemma 4:

For the moment consider z ¢ S fixed. If x =1y, then ||x = y|| =0,

and the Lemma is trivial. If x #y , let Vi =X -y for a1l i and defirne

M= v, 200, T = {1 |y, <0},

Note that:
n
izlvi= g‘vi+ 2-vi=0
1 I
and
vl = § vy = 1y
: 1 I
therefore
||vH=2 Z+vi=-2 Z_vi'
I I
i +
For each j 1let uj = 121 viQij(z) and let J = 1j | uj >0},

J o= { ] uy < 0} . Using the same logic as above,

Hul] = 2 .= =2 .
! Z+ s Z_ U,
J J

In the first case,
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||u||=zzuj=zz(
J+ J+ i

I >0

v.Q (2))
, 1713

n n

2 Z v, Z Q,,(z) =2 2 v,r,(z) ,
=1 1k 13 J=p i

vhere r,(2) 1 9@ .

Hence

[ u]|

Z(Z v,r(z) + ) viri(z)) £ 2 ) viri(z) .
I i

+ A
If h (z) = Max [r (2)],
fert 1

+

Hull < (2 ) vi)h"(z) = @ vl .
I

In a similar fashion, if

s, (2) & ] Qu(2) and b () & Hax [s, )],
1 el

then

|lul] = -2 Z_uj = -2 %.visi(Z) + Z_visi(z) < (-2 Z_vi)h-(z) .
J 1 1 I

Therefore ||ul| < h (z)|]|v]] .

To summarize in terms of x , y, z ,

[l - @ || ¢ [lx - y!| win Mux[Z Qlj(z)] : Max[{ Qij(Z)]
+ -1 -

Ly 1L

*
For each Qij(z) we have Qij >w zj where W= Min {wi [ i=1,2, ..., n} >0.

Thus
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and
*
Max[z Qij(z)] <l-w ) zg .
Lot 3
Similarly
*
Max[z Qij(z)] <1l-w 7} zg -
1 LJ” gt

It follows, that for all =z e S ,

x
Min Ma:[z*_Qij(z)].Ma_X[Z_Qij(z)] <1-L <.
I J I J

*
tus (10 - el < (1-% )11« - yllm

Proof of Theorem (1):

First assume
(8) d[R(A),R(D)] < 0d(A,D)

for all closed nonempty sets A and D . It follows immediately that L is

the unique fixed point of R,and with D =1 in (8), we obtain for each t > 1
t t
d[R"(A),L]) < o°d[A,L] .

From Toole [7] we have Rt(E) Cecl ¢ for all t , and c°°§ L . Since Rt(E)

is an expanding sequence of closed sets converging to L , we must have L = ¢l c” c
Finally, for any nonempty A with R(A) = A we have ¢l R(A) = R(clA) = cl A,
which implies ¢l A =1L .

The proof is concluded by verifying Equation (8).



Let h(u) = Min llu - vi' . Then 6{R(A),R(D)} = Max

veR (D) ueR(A)

in R(A) be such that

* %
h(u ) = §[R(A),R(D)] = Min ||u - v]| .
veR(D)

Note that

S[R(A),R(D)] = 6[{u"},R(D)] .

*
There exist some x in A and 2z € S such that u = xQ(z) .

h(u) .

18

*
Let u

Now choose

y €D so that ||x - y|| = Min||x - y|]| = 86[{x},D] . Therefore yQ(z) € R(D)

ueD

and

SIR(A),RM)] = Min |u’ - v]| < |1(x - @] .

veR(D)
From Lemma (1),
S[R(A),R(D)] < of|x - y|| = o8[{x},D] .
Also

§[{x},D] < Max §[{u},D] = &6[A,D] .

ueA
We have shown that
6[R(A),R(D)] < 08[A,D] .
It follows in a similar way that
§[R(D),R(A)] < o6[D,A] .

Therefore

d[R(A),R(D)] < od(a,D) . W
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Proof of Theorem (2):

Since F 1is nonempty and closed, it suffices by Theorem 1, to prove that
R(F) = F .
If ACS is polyhedral with extreme points ul » £ =1,2, ..., we may

represent R(A) as
Clu'Qk) for £ =1,2, ..., k =1,2,3} .
Therefore
R(F) = C{x™Q™((1 + Lmod 3)Q(§) , i =1,2,3, § =1,2,3, n = 0,1,2, ...} .

It is clear that R(F) DF . In demonstrating R(F) C F , our attendant
arguments will be sketchy--we shall omit a large amount of tedious algebra.

lLet

2
Vi={y:ye 5,¥, < (yP)z}

and

V3 ={y :ye¢ 5,y < (yP)3} .

With the aid of Figure 5, we see that if x°Q°(1) € V2 - V3 , we must have
et e e ol e, e ay)
and
Q5 (1)Q(2) € Cix’Q(2),x7a(2),x%™ (1)) .
Similarly, 1f x1Q%(2) is in V3 - V2, then
1t (20 € Ctx*a(3),x'a(3),x" (2))

and
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x1Qt (2 ¢ cixloy,x,x¢t @) .

Also, it is clear that

x2Q5(3)QQ) € CixQ(1),x%Q()}

and
szt(3)Q(2) € C{x3,x2} :

Now it follows from the condition Pyy that sz(l) e F, and it is

2Py
easy to show that we always have xIQ(3) €EF . Hence we have established that

each point of R(F) is in F , provided that the sequences {x3Qt(1)} and

{let(Z)} remain in the sets V2 - V3 and V3 - V2 respectively.

The condition Pyy 2-p12 guarantees that if xIQt(z) € V3 - V2 , then

1 t+1 3 2
x L

) Q1 (2) e cixlet2),x4,(0,1,00} c v - v

2 3

With the requirements Pyy 3.p12 and vy 2 Wy s we have that x3Qt(1) eV- -V

implies

) Q) e cixdt@).x, ,0,00} cvZ - v,

and the proof is complete.ll
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